Course detail
Heat Exchangers
FSI-LVT Acad. year: 2026/2027 Winter semester
Course contents: Summary of basic prerequisites, work with standardization of TEMA and its use in the basic design of heat exchangers, detailed design of the bundle heat exchanger (tube geometry, bulkheads, sheath current analysis), vibrations induced by flow in the shell (prediction, criteria of severity, design), calculation of pressure losses, strength calculation, influence of exchangers (corrosion, fouling) on the design of exchangers. The other principles will be the basic principles for designing phase change exchangers (capacitors, reboilers).
Supervisor
Department
Learning outcomes of the course unit
Prerequisites
Thermomechanics, Boilers and Heat Exchangers, Heat and Mass Transfer
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Language of instruction
Czech
Aims
Specification of controlled education, way of implementation and compensation for absences
The study programmes with the given course
Programme N-SUE-P: Computational Simulations for Sustainable Energy, Master's
branch ---: no specialisation, 5 credits, compulsory-optional
Programme N-ETI-P: Power and Thermo-fluid Engineering, Master's
branch ENI: Power Engineering, 5 credits, compulsory
Type of course unit
Lecture
26 hours, optionally
Syllabus
1. Principles of heat transport, types of heat exchangers
2. Methods of design of exchangers – LMTD, NTU
3. Shell and tube heat exchangers according to TEMA
4. Basic design of shell and tube exchangers
5. Advanced design of shell and tube exchangers
6. Heat exchangers – condensation
7. Heat exchangers – boiling
8. Hydraulic / aerodynamic calculation
9. Vibration and their elimination, strength calculation
10. Steam generators nuclear power plants
11. Basic design of regenerative heat exchangers
Exercise
26 hours, compulsory
Syllabus
1. Principles of heat transport, types of heat exchangers
2. The LMTD method
3. The NTU method
4.-7. Design of shell and tube heat exchangers
8. Condenser
9. Reboiler
10. Hydraulic / aerodynamic calculation
11. Strength calculation
12. Design of plate exchanger
13. Credit test