Course detail
Theory of Complex Phase Transformations
FSI-WKF Acad. year: 2026/2027 Summer semester
Supervisor
Learning outcomes of the course unit
Prerequisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Language of instruction
Czech
Aims
Specification of controlled education, way of implementation and compensation for absences
The study programmes with the given course
Programme N-MTI-P: Materials Engineering, Master's
branch ---: no specialisation, 7 credits, compulsory
Type of course unit
Lecture
39 hours, optionally
Syllabus
1. Classification of phase transformations.
2. Crystallisation in one component systems.
3. Crystallisation of solid solutions.
4. Crystallisation of solid solutions.
5. Crystallisation of eutectics and peritectics.
6. Allotropic, polymorphic and massive transformations.
7. Allotropic, polymorphic and massive transformations.
8. Eutectoid transformations.
9. Bainitic Transformations.
10. Martensitic transformations.
11. Martensitic transformations.
12. Decomposition of supersaturated solid solutions.
13. Decomposition of supersaturated solid solutions.
Laboratory exercise
14 hours, compulsory
Syllabus
1. Assessment of chemical inhomogeneity in cast materials.
2. Assessment of chemical inhomogeneity in cast materials.
3. Evaluation of calorimetric experiments and estimation of the phase transformation energy.
4. Evaluation of calorimetric experiments and estimation of the phase transformation energy.
5. Evaluation of microstructures, solution of the Avrami equation and construction of a part of the transformation diagram.
6. Evaluation of microstructures, solution of the Avrami equation and construction of a part of the transformation diagram.
Exercise
12 hours, compulsory
Syllabus
1. Key words of the first law of thermodynamics, thermochemical principles.
2. Solution of examples.
3. Key words of the second law of thermodynamics, equilibrium and spontaneous processes.
4. Solution of examples.
5. Key words of the phase transformation kinetics.
6. Solution of examples.
7. The laws of diffusion, solution of examples.