Course detail
Control Theory II
FSI-VA2 Acad. year: 2026/2027 Winter semester
Supervisor
Department
Learning outcomes of the course unit
Prerequisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
In order to be awarded the course-unit credit students must prove 100% active participation in laboratory exercises and elaborate a paper on the presented themes. The exam is written and oral. In the written part a student compiles two main themes which were presented during the lectures and solves three examples. The oral part of the exam will contain discussion of tasks and possible supplementary questions.
Attendance and activity at the seminars are required. One absence can be compensated for by attending a seminar with another group in the same week, or by elaboration of substitute tasks. Longer absence can be compensated for by the elaboration of compensatory tasks assigned by the tutor.
Language of instruction
Czech
Aims
The aim of the course is to formulate and establish a basic knowledge of modern control theory. To strengthen the knowledge by the understanding the context of the different methods of state controller synthesis. To learn the methods of the synthesis.
To be well informed about the foundations of modern control theory. To be able to choose and use adequate methods of state controller synthesis for the solution of the given tasks.
Specification of controlled education, way of implementation and compensation for absences
The study programmes with the given course
Programme N-AIŘ-P: Applied Computer Science and Control, Master's
branch ---: no specialisation, 5 credits, compulsory
Type of course unit
Lecture
39 hours, optionally
Syllabus
1. State-space representation
2. State model conversions
3. Controllability, observability and pole placement
4. Design of control systems
5. State observer
6. Quadratic optimal control systems
7. Robust control systems
8. Robust control system synthesis
9. Synthesis of control system with observer
10. Nonlinear system description, typical nonlinearities
11. State-plane method,
12. Methods of linearization, verification of linearized model
13. Control system synthesis
Laboratory exercise
8 hours, compulsory
Syllabus
1. Measurement of selected non-linearities of mechanical and electrical devices.
2. State control of DC motor without integration.
3. State control of DC motor with integration.
4. Credit
Computer-assisted exercise
18 hours, compulsory
Syllabus
1. Illustrations of LTI technical systems, simple mechanical and electrical systems representation in the state space. Transformations between inner and outer description of system
2. State-space representation of more complex mechanical and electrical systems using MATLAB/Simulink
3. Controllability, observability of technical systems in status space, pole placement method with use of MATLAB, illustrations of technical systems
4. Synthesis in state space, design of state controller
5. Design of state space controller with state observer. Design of state space controller with state observer and fault compensation
6. Quadratic optimal controller design
7. Robust controller design
8. Modelling of nonlinear system using the state plane method
9. Models linearization, behavior of linearized model assessment. Control system design with linearized model.