Publication detail
Plasticity and ductile fracture of conventionally manufactured AISI 316L compared to one produced by selective laser melting with and without machining
ŠEBEK, F. KUBÍK, P. ZAPLETAL, J. KUNČICKÁ, L. KOCICH, R. PAGÁČ, M. PAŠKA, Z. FOJTÍK, F. HALAMA, R.
Czech title
Plasticita a tvárné porušování konvenčně vyrobené AISI 316L porovnané k té vyrobené selektivním laserovým tavením s a bez obrábění
English title
Plasticity and ductile fracture of conventionally manufactured AISI 316L compared to one produced by selective laser melting with and without machining
Type
journal article in Web of Science
Language
en
Original abstract
The utilization of additively manufactured materials has increased. Knowledge of the behaviour of this prepared material is crucial to designing safe structures and products. However, the properties are different from those of conventionally produced materials. Therefore, the focus is on widely used AISI 316L austenitic stainless steel to present its plasticity and ductile fracture, crucial in decision-making within the design process. The additively manufactured specimens were machined and also left as built, as it is not always economical to machine all the surfaces, which can even be impossible in some cases. However, it has been shown that the machining can be detrimental in some cases. First of all, the stress-strain behaviour was studied in order to simulate all the experiments. Then, several ductile fracture criteria were calibrated using these simulations and mutually compared for three studied material states-conventionally wrought (rolled), as built and machined after printing. The material prepared by the laser powder bed fusion technology exhibited higher yield strength compared to that of the wrought material. The results further show a significant difference when it comes to ductility, which is highest for wrought material and lowest for printed material that was machined. The study also provides information on the mechanisms of hardening and failure with fractography performed to support the findings for widespread austenitic stainless steel.
Czech abstract
Využití aditivně vyrobených materiálů roste. Znalost chování takto připraveného materiálu je zásadní pro navrhování bezpečných struktur a produktů. Vlastnosti jsou nicméně odlišné od těch pro konvenčně produkované materiály. Proto je pozornost zaměřena na široce používanou austenitickou korozivzdornou ocel AISI 316L a prezentaci její plasticity a tvárného porušování, zásadního pro rozhodování se v procesu navrhování. Aditivně vyrobené vzorky byly obrobeny a také ponechány po stavbě tak, jelikož není vždy ekonomické obrábět všechny povrchy, což může být v některých případech dokonce nemožné. Bylo nicméně ukázáno, že obrábění může být v některých případech poškozující. Nejprve bylo studováno napěťově-deformační chování pro simulace všech experimentů. Poté bylo pomocí těchto simulací kalibrováno několik kritérií tvárného porušování a vzájemně porovnáno pro tři studované stavy materiálu-konvenčně tvářeného (válcovaného), po stavbě ponechaného a po stavbě obráběného. Materiál připravený technologií laserové fúze v práškovém loži vykazoval vyšší mez kluzu v porovnání k té pro tvářený materiál. Výsledky dále ukazují výrazný rozdíl, co se týče tažnosti, která je nejvyšší pro tvářený materiál a nejnižší pro tištěný materiál, který byl obrobený. Studie dále poskytuje informace o mechanismech zpevnění a porušování s fraktografií provedenou na podporu zjištění o rozšířené austenitické korozivzdorné oceli.
English abstract
The utilization of additively manufactured materials has increased. Knowledge of the behaviour of this prepared material is crucial to designing safe structures and products. However, the properties are different from those of conventionally produced materials. Therefore, the focus is on widely used AISI 316L austenitic stainless steel to present its plasticity and ductile fracture, crucial in decision-making within the design process. The additively manufactured specimens were machined and also left as built, as it is not always economical to machine all the surfaces, which can even be impossible in some cases. However, it has been shown that the machining can be detrimental in some cases. First of all, the stress-strain behaviour was studied in order to simulate all the experiments. Then, several ductile fracture criteria were calibrated using these simulations and mutually compared for three studied material states-conventionally wrought (rolled), as built and machined after printing. The material prepared by the laser powder bed fusion technology exhibited higher yield strength compared to that of the wrought material. The results further show a significant difference when it comes to ductility, which is highest for wrought material and lowest for printed material that was machined. The study also provides information on the mechanisms of hardening and failure with fractography performed to support the findings for widespread austenitic stainless steel.
Keywords in Czech
3D tisk kovu; laserový paprsek; prášková metalurgie; rychlé prototypování; selektivní laserové tavení
Keywords in English
3D metal printing; laser beam; powder metallurgy; rapid prototyping; selective laser melting
Released
20.03.2025
ISSN
0268-3768
Volume
137
Number
7-8
Pages from–to
3933–3948
Pages count
16
BIBTEX
@article{BUT197698,
author="František {Šebek} and Petr {Kubík} and Josef {Zapletal} and Lenka {Kunčická} and Radim {Kocich} and Marek {Pagáč} and Zbyněk {Paška} and František {Fojtík} and Radim {Halama},
title="Plasticity and ductile fracture of conventionally manufactured AISI 316L compared to one produced by selective laser melting with and without machining",
year="2025",
volume="137",
number="7-8",
month="March",
pages="3933--3948",
issn="0268-3768"
}