Detail předmětu

Obyčejné diferenciální rovnice v mechanice

FSI-SRM Ak. rok: 2026/2027 Zimní semestr

Předmět seznámí studenty se základy kvalitativní teorie obyčejných diferenciálních rovnic, zejména s otázkami existence, jednoznačnosti a prodloužitelnosti řešení počátečních úloh pro nelineární neautonomní soustavy diferenciálních rovnic prvního řádu. V rámci tohoto předmětu budou probrány také otázky stability řešení neautonomních soustav a jejich speciálních případů a základy teorie dynamických systémů. Budou také připomenuty základy klasické mechaniky (kinematika a dynamika bodových těles a jejich soustav, Lagrangeovy rovnice 2. druhu) potřebné k sestavení pohybových rovnic jednodušších mechanických soustav. Vybudovaný matematický aparát bude použit v analýze obyčejných diferenciálních rovnic objevujících se ve vybraných matematických modelech z mechaniky, přičemž v jejich analýze bude kladen důraz na přesnou matematickou argumentaci. Jedná se zejména o modely kmitání lineárních a nelineárních mechanických soustav.

Zajišťuje ústav

Výsledky učení předmětu

Prerekvizity

Plánované vzdělávací činnosti a výukové metody

Způsob a kritéria hodnocení

Jazyk výuky

čeština

Cíl

Cíl kurzu: Cílem předmětu je seznámit studenty se základy kvalitativní teorie obyčejných diferenciálních rovnic, dynamických systémů a analytické mechaniky. Úkolem je také studentům ukázat použití teoretických výsledků v analýze diferenciálních rovnic objevujících se v matematických modelech v mechanice, přičemž vhodně interpretovat získané poznatky, avšak dbát na korektní matematickou argumentaci.

Získané znalosti a dovednosti: Po absolvování předmětu studenti zvládnou použít teoretický matematický aparát v analýze diferenciálních rovnic objevujících se ve vybraných matematických modelech v mechanice. Budou schopni sestavit pohybové rovnice jednodušších mechanických soustav a posoudit otázku stability ekvilibrií a periodických řešení získaných obecně nelineárních autonomních soustav diferenciálních rovnic. Na vybraných úlohách z mechaniky i jiných disciplín se seznámí s možnostmi matematického modelování pomocí obyčejných diferenciálních rovnic. 

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Použití předmětu ve studijních plánech

Program N-MAI-P: Matematické inženýrství, magisterský navazující
obor ---: bez specializace, 6 kredity, povinný

Typ (způsob) výuky

 

Přednáška

39 hod., nepovinná

Osnova

Lineární soustavy obyčejných diferenciálních rovnic (ODR), stabilita, základy Floquetovy teorie.
Počáteční úloha pro nelineární soustavy ODR: Existence, jednoznačnost a prodloužitelnost řešení.
Struktura množiny řešení počáteční úlohy pro nelineární soustavy ODR.
Stabilita řešení kvazilineárních soustav. Přímá Lyapunovova metoda.
Stabilita ekvilibrií a periodických řešení autonomních soustav.
Hamiltonovské a gradientní systémy.
Nelineární autonomní diferenciální rovnice 2. řádu.
Základní pojmy a principy kinematiky a dynamiky pohybu bodového tělesa a soustav bodových těles.
Základy analytické mechaniky, Lagrangeovy rovnice 2. druhu.
Variační principy klasické mechaniky, heuristické základy Hamiltonovské mechaniky.
Dynamická stabilizace Kapitzova kyvadla.

Cvičení

13 hod., povinná

Osnova

Geometrické úlohy vedoucí k analytickému řešení ODR.
Kvalitativní analýza řešení některých diferenciálních a integrálních rovnic.
Stabilita a klasifikace ekvilibrií nelineárních autonomních soustav ODR, Hamiltonovských systémů a diferenciálních rovnic 2. řádu.
Sestavení pohybových rovnic vybraných mechanických soustav s 1 i více stupni volnosti a jejich kvalitativní analýza.