Detail publikace

Conformal Cartesian Grids for Symmetric Bodies: A Novel Boundary Fitted Grid Method

KARAMPELAS, S.

Český název

Conformal Cartesian Grids for Symmetric Bodies: A Novel Boundary Fitted Grid Method

Anglický název

Conformal Cartesian Grids for Symmetric Bodies: A Novel Boundary Fitted Grid Method

Typ

článek v časopise - ostatní, Jost

Jazyk

en

Originální abstrakt

A novel Cartesian grid discretization method is developed to simulate two and three dimensional problems, governed by partial differential equations. In the present approach, the grid points lie exactly onto the surface of an immersed object or of the domain’s boundaries, allowing for accurate imposition of the surface boundary conditions. This is well demonstrated for symmetric objects, but it can be also extended for non-symmetric shapes. The method intrinsically possesses higher accuracy than the conventional body fitted or Immersed Boundary Methods, since the implemented grid is universally orthogonal and the boundary conditions are imposed precisely onto the surface, without any interpolation or tuning of the governing equations. Conformal Cartesian Grids bridge the topology of Cartesian grid methods with the treatment of the surface boundary conditions, which is adopted in conventional bodyfitted grid approaches. Emphasis is given in a two dimensional fluid dynamics problem to demonstrate this approach. A finite difference code has been developed, which encompasses the present methodology. Space discretization is performed via the second order accurate central difference scheme and time discretization by the fourth order accurate Runge-Kutta method. The flow past a cylinder at low Reynolds number is resolved to validate the accuracy and performance of the method. Two different flow regimes are thoroughly investigated at Re numbers varying from 10 up to 100 based on the cylinder’s diameter. Computed results agree well with the available measurements and numerical computations in literature. Three dimensional results are also briefly presented mainly for revealing the applicability of the method.

Český abstrakt

Nová metoda pro diskretizaci kartézskou sítí je vyvinuta pro simulaci dvou a tří dimenzionálních problémů popsaných parciálními diferenciálními rovnicemi. V současném přístupu leží body sítě přesně na povrchu ponořeného tělesa nebo na hranicích domény, čímž dovoluje přesné předepsání povrchových okrajových podmínek. Toto je dobře ukázáno na symetrických tělesech, ale metoda může být rozšířena také na nesymetrické tvary. Ve své podstatě má metoda vyšší přesnost než běžné metody – body-fitted, immersed boundary method, což je docíleno ortogonální sítí a předepsáním okrajových podmínek přesně na povrchu tělesa bez užití interpolace nebo ladění rovnic. Konformní kartézské sítě propojují topologii kartézské sítě s běžným předpisem okrajových podmínek aplikovanými v body-fitted metodách. Vlastnosti této metody jsou demonstrovány na 2D úloze dynamiky tekutin, k čemuž byl vyvinut program na principu konečných diferencí, který zahrnuje také prezentovanou metodu. Prostorová diskretizace je provedena skrze centrální diferenční schéma s přesností 2. řádu a časová diskretizace je provedena metodou Runge-Kutta. Validace přesnosti a výkonu této metoda je provedena na příkladu proudění okolo válce při nízkých Reynoldsových číslech. Dva režimy proudění byly důkladně prozkoumány při Re číslech v rozsahu od 10 do 100 vztaženy k průměru válce. Výsledky výpočtu dobře souhlasí s v literatuře dostupnými měřeními a numerickými výpočty. Jsou také zběžně prezentovány 3D výsledky za účelem odhalení možností aplikace metody v prostorových úlohách.

Anglický abstrakt

A novel Cartesian grid discretization method is developed to simulate two and three dimensional problems, governed by partial differential equations. In the present approach, the grid points lie exactly onto the surface of an immersed object or of the domain’s boundaries, allowing for accurate imposition of the surface boundary conditions. This is well demonstrated for symmetric objects, but it can be also extended for non-symmetric shapes. The method intrinsically possesses higher accuracy than the conventional body fitted or Immersed Boundary Methods, since the implemented grid is universally orthogonal and the boundary conditions are imposed precisely onto the surface, without any interpolation or tuning of the governing equations. Conformal Cartesian Grids bridge the topology of Cartesian grid methods with the treatment of the surface boundary conditions, which is adopted in conventional bodyfitted grid approaches. Emphasis is given in a two dimensional fluid dynamics problem to demonstrate this approach. A finite difference code has been developed, which encompasses the present methodology. Space discretization is performed via the second order accurate central difference scheme and time discretization by the fourth order accurate Runge-Kutta method. The flow past a cylinder at low Reynolds number is resolved to validate the accuracy and performance of the method. Two different flow regimes are thoroughly investigated at Re numbers varying from 10 up to 100 based on the cylinder’s diameter. Computed results agree well with the available measurements and numerical computations in literature. Three dimensional results are also briefly presented mainly for revealing the applicability of the method.

Klíčová slova česky

Metody kartézských sítí; metoda immersed boundary; obtékání válce; konformní; metoda konečných diferencí

Klíčová slova anglicky

Cartesian grid methods; Immersed boundary methods; Cylinder flow; Conformal; Finite-difference method

Rok RIV

2015

Vydáno

20.07.2015

Nakladatel

OMICS Publishing Group

Místo

Indie

ISSN

2168-9679

Ročník

4

Číslo

4

Strany od–do

1–15

Počet stran

15

BIBTEX


@article{BUT116394,
  author="Stavros {Karampelas},
  title="Conformal Cartesian Grids for Symmetric Bodies: A Novel Boundary Fitted Grid Method",
  year="2015",
  volume="4",
  number="4",
  month="July",
  pages="1--15",
  publisher="OMICS Publishing Group",
  address="Indie",
  issn="2168-9679"
}